INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 39 (2002) 5081-5099

A three-dimensional nonlinear model for dissipative
response of soft tissue

M.B. Rubin *, S.R. Bodner

Faculty of Mechanical Engineering, Technion—Israel Institute of Technology, 32000 Haifa, Israel
Received 9 June 2001; received in revised form 27 February 2002

Abstract

A set of three-dimensional constitutive equations is proposed for modeling the nonlinear dissipative response of soft
tissue. These constitutive equations are phenomenological in nature and they model a number of physical features that
have been observed in soft tissue. The equations model the tissue as a composite of a purely elastic component and a
dissipative component, both of which experience the same total dilatation and distortion. The stress response of the
purely elastic component depends on dilatation, distortion and the stretch of material fibers, whereas the stress response
of the dissipative component depends on distortional deformation only. The equations are hyperelastic in the sense that
the stress is obtained by derivatives of a strain energy function, and they are properly invariant under superposed rigid
body motions. In contrast with standard viscoelastic models of tissues, the proposed constitutive model includes the
total deformation rate in evolution equations that can reproduce the observed physical feature that the hysteresis loops
of most biological soft tissues are nearly independent of strain rate (Biomechanics, Mechanical Properties of Living
Tissues, second ed. (1993)). Material constants are determined which produce good agreement with uniaxial stress
experiments on superficial musculoaponeurotic system and facial skin.
© 2002 Published by Elsevier Science Ltd.

Keywords: Biomechanics; Finite deformation; Soft tissue; Viscoelastic; Viscoplastic

1. Introduction

Understanding the response of living tissues to mechanical loads is essential to a wide range of problems
that include the design of prosthetic devices and the evaluation of optimal surgical and suturing procedures.
This field of study has received considerable attention over the last few decades and much of the research
has been reviewed in the book on biomechanics by Fung (1993).

Living tissue is a complicated composite structure that is composed of a number of materials. For ex-
ample, superficial musculoaponeurotic system (SMAS) and facial skin both contain elastin, collagen, fat
cells and water. Moreover, many biological tissues are porous and allow blood flow to supply nutrients to
the cells that form the building blocks of the tissue. Biochemical processes, osmotic pressure, growth of
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cells, aging, and environmental factors all contribute to the complicated response of tissue. Also, the
material behavior is nonlinear, time dependent and anisotropic.

From a fundamental point of view, it is desirable to develop mathematical models which include all of
the important physical processes that are active in living tissues. Specific attempts to model the nonlinear
deformations and fluid flow processes in porous media can be found in Vankan et al. (1997) and Huyghe
and Janssen (1999).

Such fundamental approaches usually lead to complicated nonlinear partial differential equations.
Consequently, attempts to simplify these models by using phenomenological constitutive equations are
desirable and can provide sufficient descriptions of the material response for many applications. For ex-
ample, cardiac muscle has been modeled (Choung and Fung, 1986; Humphrey and Yin, 1987; Horowitz
et al., 1988; Humphrey et al., 1990) using phenomenological constitutive equations which include non-
linear elasticity, viscoelasticity and anisotropy due to the response of oriented fibers. Also, the general
modeling of soft tissue has been discussed recently by Holzapfel (2001).

Har-Shai et al. (1996) performed mechanical uniaxial stress tests on recently excised strips of facial tissue
which included cycles of loading, unloading, reloading at various strain rates, and stress relaxation. These
experimental results were modeled by Rubin et al. (1998), and the experimental data are shown in Fig. 1 for
SMAS and in Fig. 2 for facial skin (note that the predictions shown in these figures are based on the new
model presented below). In these figures I1;; is the engineering axial stress (force per unit reference area)
and ¢, is the engineering axial strain (change in length per unit reference length), both of which were
measured in the experiments. Figs. 1(a) and 2(a) show three cycles of loading with the magnitude of
the strain rate é;; for cycle 1 being greater than that for cycle 2, which is greater than that for cycle 3. The
relaxation tests shown in Fig. 1(b) were performed on a different sample of SMAS than that used in the
cyclic loadings of Fig. 1(a), whereas the relaxation tests shown in Fig. 2(b) were performed on the same
sample of facial skin used in the cyclic loadings of Fig. 2(a), with the relaxation tests being performed after
the cyclic loading tests. Moreover, it will be shown later in Fig. 6 that the differences between the responses
to these cycles of loading are due to changes in the internal structure (internal state variables) of the
material and not due to the differences in the imposed strain rates.

These figures exhibit material response that seems to be representative of many soft tissues. Specifically,
Fung (1993, p. 262) identifies the following physical features

(P1) a nonlinear stress—strain relationship,
(P2) a hysteresis loop in cyclic loading and unloading,
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Fig. 1. Response of SMAS: (a) loading and unloading cycles (cycle 1: &; = 2.0 x 1072 s7; cycle 2: é;; = £5.0 x 1073 s7!; cycle 3:
&, = £1.0 x 1073 s71); and (b) stress relaxation cycles (¢;; = 4-5.0 x 1073 s7! for loading and unloading).
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Fig. 2. Response of facial skin: (a) loading and unloading cycles (cycle 1: & = £1.0 x 1072 s7!; cycle 2: &;; = £2.5 x 1073 s7!; cycle 3:
& = +5.0 x 107* s7!); and (b) stress relaxation cycles (¢;; = 2.5 x 1073 s~! for loading and unloading).

(P3) stress relaxation at constant strain,
(P4) preconditioning in repeated cycles (a tendency to approach a stable cycle, which is associated primar-
ily with elastic response).

The preconditioning phenomena is somewhat apparent in Fig. 1(a) where cycling between fixed stress
levels causes the hysteresis loops to reduce in width. This indicates that the material response becomes more
elastic. Furthermore, with regard to preconditioning, Fung (1993, p. 262) states that:

The reason that preconditioning occurs in a specimen is that the internal structure of the tissue changes
with the cycling. By repeated cycling, eventually a steady state is reached at which no further change
will occur unless the cycling routine is changed. Changing the upper and lower limits of the cycling will
change the internal structure again, and the specimen must be preconditioned anew.

Moreover, the additional physical feature
(PS) stress relaxation from a given stress level reduces consequent to repeated cycling,
can be observed from Figs. 1(b) and 2(b).

In addition to the characteristics (P1)—(P5), observations on soft tissues indicate that hysteresis loops to
the same stress levels are nearly independent of strain rate over a wide range of rates (Fung, 1993, p. 281).
This feature can be stated as an additional property

(P6) the hysteresis loops are nearly independent of strain rate.

The main objective of this paper is to focus attention on modeling the dissipative response of soft tissue.
As previously mentioned, detailed modeling of the physical processes that occur in composite structures
like soft tissue is quite complicated. Consequently, here attention will be focused on phenomenological
constitutive equations.

With a viscoelastic approach (e.g. Neubert, 1963; Puso and Weiss, 1998; Pioletti and Rakotomanana,
2000), hereditary integrals are introduced to account for the effects of the loading history. These integrals
are usually represented in terms of a finite number of relaxation times so they cannot predict the physical
response (P6). An alternative model for the time-dependent response of tissues, motivated by the unified
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constitutive equations for elastic-viscoplastic materials proposed by Bodner and Partom (1975), and
Bodner (1987), has been developed by Rubin et al. (1998). Instead of using hereditary integrals, this model
uses history dependent state-variables which are determined by evolution equations for their time rates of
change.

More specifically, the work of Rubin et al. (1998) developed one-dimensional constitutive equations
which modeled all of the physical features (P1)-(P6) and matched the experimental data of Har-Shai et al.
(1996) fairly well. The model developed here also models these physical features but it improves on that
previous model in three main respects:

(1) it is a full three-dimensional model,

(2) it includes anisotropic effects of material fiber orientations,

(3) it includes elastic components and recovery of hardening (which models recovery of fluid in the un-
loaded cells) that lead to full recovery of the unloaded shape over time.

An outline of the contents of this paper is as follows: Section 2 provides a discussion of the previous
model (Rubin et al., 1998), Section 3 describes the general constitutive equations and Section 4 proposes
specific functional forms for the strain energy and the evolution equations. Section 5 describes examples of
uniaxial stress and shows that the proposed equations can predict good agreement with experiments on
SMAS and facial skin. Section 6 presents conclusions and Appendix A briefly describes aspects of ap-
propriate numerical integration procedures.

Also, throughout the text, a - b denotes the dot product between two vectors a and b; A-B = tr(ATB)
denotes the inner product between two second order tensors A and B; and the symbol ® denotes the tensor
product.

2. Discussion of the previous model

In the previous one-dimensional model (Rubin et al., 1998), the elastic strain ¢, is determined by inte-
grating an evolution equation of the form

e = & — A, (1)
where ¢ is the total deformation rate and the inelastic strain rate 4; is specified by the constitutive equation
A; = D, (2a)
a+ b|§ 1 { Z }2”
D= exp | —= , 2b
|ge| P [ 2 Oeff ( )
Oeff = |0| (20)

Also, the stress ¢ is a nonlinear function of the elastic strain
o =0(g). (3)

In these equations, the constant n controls the sharpness of the transition from primarily elastic to vi-
scoplastic response and also controls rate sensitivity, Z is a measure of hardening, the constant « is im-
portant in relaxation tests (|¢| = 0), and the constant » dominates the inelastic response during loading.
This model was used (Rubin et al., 1998) to obtain good agreement with the available experimental data.

In modeling metal plasticity, the term b|¢| in (2b) is usually set to zero so that the evolution equation (1)
is explicitly rate dependent. However, in modeling SMAS and facial skin it was found that the term b|¢| is
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significant during the loading cycles. More specifically, if ¢ in (2b) vanishes, then the response of the
evolution equation (1) becomes explicitly independent of time so that the physical condition (P6) will be
satisfied. Consequently, by introducing the total deformation rate into the inelastic term 4; in (1), (2a), it is
possible to satisfy the condition (P6) about the near rate independence of the hysteresis loops without the
need for a large number of discrete relaxation times. Also, integration of the evolution equation (1) does not
increase computer storage requirements as can occur in hereditary integral approaches to inelasticity.
During the experiments reported by Har-Shai et al. (1996) on recently excised facial skin, it was observed
that liquid drops appeared on the tissue’s outer surface as it was being loaded. In that paper it was
speculated that the fluid transport associated with stressing the specimen was responsible for the apparent
hardening phenomena. Thus, from the phenomenological point of view, this effect of fluid transport was
modeled (Rubin et al., 1998) by proposing an evolution equation for the hardening variable Z of the form

Z = mDUeff, (4)

where m is a function that controls the rate of hardening and D is given by (2b).

Although Egs. (1)-(4) provide a constitutive model that is consistent with the physical features (P1)—(P6)
and produces reasonably good predictions of the experimental data, it neglects the physical phenomena
that soft tissue in situ eventually recovers its original shape and its original stress—strain curves after it has
been deformed and unloaded for sufficient time (neglecting aging effects). This presumably occurs as fluid is
redistributed in the recovering tissue. Within the one-dimensional context, this phenomena can be modeled
by including both an elastic component and recovery of hardening, which models recovery of fluid in the
unloaded cells. In particular, a nonlinear version of a simple three element model with an elastic spring (the
elastic component) can be used in parallel with a Maxwell element (the dissipative component) consisting of
an elastic spring in series with a viscous dashpot. Specifically, the stress is assumed to be an additive
function of the form

0 = 0_0(3) + 6d(£dc)7 Oeff = |Ud|7 (5)
where o, is the stress response of the elastic component, which depends on total strain ¢ only, and o4 is the
stress response of the dissipative component, which depends on the elastic strain gy of the dissipative
component. Moreover, the evolution equation (4) for hardening can be modified to take the form

Z = mDGeff — R7 (6)
where the hardening recovery term R is a nonnegative function of the hardening variable that vanishes
when Z vanishes

R=0 forZ=0. (7)

For appropriate constitutive equations, the unloaded tissue with zero total stress g, will recover its original
length (¢ = 0) as g4 and Z evolve towards zero.

3. General constitutive equations

Using standard notions in continuum mechanics, the position X of a material point in the fixed reference
configuration is mapped to the position x in the present configuration at time . Moreover, a material line
element dX in the reference configuration is deformed into the material line element dx in the present
configuration, such that

dx = FdX, (8a)

F = 0x/0X, (8b)
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J=detF >0, (8¢c)
F =LF, (9a)
L = 0v/0x, (9b)
D=}L+L")=D", (9¢)

where F is the deformation gradient, J is the dilatation, L is the velocity gradient, D is the rate of defor-
mation tensor, and a superposed (-) denotes material time differentiation holding X fixed. Also, within the
context of the purely mechanical theory, it can be shown that the rate of dissipation & remains nonnegative

7=T-D—pyj >0, (10)

where T is the Cauchy stress, p is the current mass density and i is the strain energy function per unit mass.

The following analysis the tissue is considered to be a composite of elastic and dissipative components,
and the affine assumption is used which considers each of these components to experience the same total
strain. The elastic component depends on total deformation measures from the unstressed reference con-
figuration and is assumed to be composed of a structure which responds to both total dilatation and
distortion, as well as fiber constituents which respond to stretching. Also, the dissipative component is
assumed to respond to distortional deformation.

In modeling the elastic component, it is recalled that for nonlinear isotropic elastic response the strain
energy can be expressed as a function of the invariants of various deformation tensors. Here, use is made of
the work of Flory (1961) to separate the total deformation tensor B into the dilatation J, which is a pure
measure of volumetric deformation, and the symmetric tensor B’, which is a pure measure of total dis-
tortional deformation, such that

B = FF', (11a)
B =J B, (11b)
det(B') = 1. (11¢)

Since B’ is a unimodular tensor, it follows that it has only two independent nontrivial invariants which can
be expressed as

B=B-1, p,=B-B. (12)

Also, using (9a) it can be shown that J and B’ can, alternatively, be determined by integrating the evolution
equations

J=JD-I, (13a)

B'=LB +BL"-}D-I)B. (13b)
Thus, the material derivatives of 5, and f3, can be expressed in the forms

B, = 2[B' — {(8'- DI - D, (14a)

B, =4[B? — {(B”.DI] - D. (14b)

In modeling the dissipative component, it is recalled (Rubin, 1994a,b, 1996) that physically consistent
constitutive equations for elastically anisotropic response of elastic—viscoplastic materials can be developed
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using the work of Eckart (1948), Besseling (1968), and Leonov (1976). Specifically, for large deformations
of elastically isotropic elastic—viscoplastic materials, it is convenient to introduce a symmetric unimodular
tensor B, which is a pure measure of elastic distortional deformation associated with the dissipative
component. This tensor is determined by integrating the evolution equation

B;. = LB}, + B, L' — (D - I)Bj, — I'A,, (15a)
det(B,,) = 1, (15b)
Ag=B { 3 }1 (15¢)
d = BPge 7 Y o1 1 )
© o Bi'
Aq-Bi' =0, (15d)

where the rate of inelastic deformation is determined by the scalar function I" and the symmetric tensor Ay.
The tensor A4 in (15d) is one of the simplest forms that causes elastic distortional deformation B}, to re-
main a unimodular tensor (15b), and causes it to evolve towards the value I. Moreover, since B, is a
unimodular tensor it also has only two independent invariants

04} :B:ie'L Ol :Béle'Biie' (16)
Furthermore, the material derivatives of a; and o, can be expressed in the forms

& = 2[B), — (B, - DI - D — T'Aq - 1, (17a)
6, = 4By, — (B, -I)I]-D — 2I'A4 - B),.. (17b)

Models of many soft tissues include explicit modeling of arrays of elastic fibers which have specific ori-
entations in the tissues (e.g. Puso and Weiss, 1998; Holzapfel, 2001). In this regard, it is convenient to recall
that with the help of (8a) and (9a), that the time rate of change of a material line element dx can be ex-
pressed in the form

dx = Ldx. (18)

Here, the anisotropic response of the tissue is modeled by N fiber components, each of which models the
elastic response of an array of fibers oriented is a specific material direction. Moreover, in view of the affine
assumption, arrays of fibers that have the same material orientation can be treated as a single fiber com-
ponent which deforms like a line element. Specifically, let the unit vectors M; (I = 1,2,..., N) characterize
the orientations of these fiber components in the reference configuration, and let the vectors m; characterize
the orientations and stretches of these deformed fiber components in the present configuration, such that

my :FM[, (193)
M['M]ZI, (lgb)
J; = |my|, (no sum on [), (19¢)

where /; is the stretch of the line element m;, and the usual summation convention over repeated indices is
suspended for capital indices. Thus, with the help of (18) it can be shown that alternatively, m; can be
determined by integrating the evolution equation

Ih] = Lm1. (20)
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Furthermore, the material derivatives of 4; can be expressed in the forms

J = /{1[ (m; ® m;) - D (no sum on 7). (21)
Assuming that the anisotropic response of tissue is due solely to the presence of specific arrays of fibers, it

possible to model the nonlinear inelastic response of the tissue by taking the strain energy function ¥ in the
form

lp:w<']7ﬁ17ﬁ27alao‘27;‘1) forl:laza"'aN' (22)
Next, substituting (22) into (10), the resulting expression becomes a coefficient times D which includes the

stress T and additional terms. Taking this coefficient of D equal to zero leads to the constitutive equation
for stress in the form

T=-—pl+T, T -I=0,

1 —1
"OaJ Z3 ° it

alp ’ 1 / alﬁ 2 1 2 alﬂ -1 / 1 /
T =2 B —-(B- 4 B-—-(B“-DI 200 — B, —=(B, -DI
Po = aﬂ |: 3( ):| + Po 2 aﬁz |: 3( ) + Po a(le de 3( de )
oy P P 1
+4p0a J! Bde— (B2 +Z o % M (m; @ my) — = (my - m)1, (23)
and to the following expression for the dissipation (10)
) 0
7 = p, a—'pJ TAg-1+2p, a—wJ I'Ag B, >0, (24)

where p, is the reference value of the mass density, and use has been made of the conservation of mass in
the form

pJ = po. (25)

The constitutive equations (23) are motivated by the necessary conditions required for the dissipation & to
vanish whenever the material response is purely elastic (I" = 0). However, in the present context, the
functional form for I' is left unspecified so that the Egs. (23) and (24) are only sufficient conditions for the
inequality (10) to be satisfied for all processes. These equations are hyperelastic in the sense that the stress is
obtained by derivatives of a strain energy function, and it can be shown that they are properly invariant
under superposed rigid body motions.

In (23) it can be seen that the dilatation J mainly influences the pressure p, the distortional deformation
measures oy, o, f§;, f, mainly influence the deviatoric stress T’, and the stretches 4; influence both p and T'.
Also, it is important to emphasize that in modeling soft tissue, the stress relaxation effects associated with
the term I'A4 no longer model the effects of plasticity (as in the case of metals), but rather model the
temporary internal microstructural changes associated with fluid flow and elastic distortion of cells.

4. Specific constitutive equations

The objective of this section is to develop specific simple constitutive equations to model the responses of
SMAS and facial skin that are shown in Figs. 1 and 2. Also, the constitutive equations will be used to
simulate response characteristics to loadings which demonstrate various physical features of the modeling.
A number of polynomial and exponential functional forms for the strain energy y have been recorded in
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Table 2 of Pioletti and Rakotomanana (2000). For simplicity, it will be assumed here that only one array of
fibers is active and that the strain energy function takes the form

poY = 5—; lexp(qg) — 1], g=&() +&(B) +&(h) + ga(), (26)
where u, is a material constant having the units of stress and ¢ is a dimensionless constant that controls
nonlinearity of the moduli for the different stress responses in the composite structure. Here, the function g
separates into four parts, with g, characterizing the response to total dilatation, g, characterizing the re-
sponse to total distortion, gz characterizing the response to stretching of the fiber component, and g4
characterizing the response to distortional deformation of the dissipative component. In particular, these
functions are specified by

&) =2m[(J = 1) =In(J)], &) =m(p) = 3),

g(h) = %Un — 1), galon) = o =3, (27)
my
where the material constants m;, m,, m; have been normalized relative to the constant .
Since material fibers are usually coiled, the elastic response to extension is highly nonlinear and the fiber
component, which is modeled here, exhibits essentially zero stiffness to compression because it buckles
(Puso and Weiss, 1998). For this reason, the McAuley brackets

(x) = 3x + x]), (28)

have been used to eliminate the response to compression of the fiber component (4; < 1). Furthermore, for
the exponent my4 > 1, the response of the fiber component will have zero stiffness initially in tension, which
is consistent with its zero stiffness in compression.

It now follows from the results (23) that the constitutive equation for the stress associated with as-
sumptions (26) and (27) becomes

T=TD 4+ T® L TG T(4),

TV = mluB - 1]1, T? = myuJ 'B’,

T® = myp ! % Gp =1 mom), T@=w B, (29)
where p is the nonlinear shear modulus

= pyexp(qg), (30)
and where the deviatoric tensors B” and B}, are defined by

B'=B —'B-DI, B =B, —B, DL (31)

Also, it can be shown that the dissipation inequality (24) for these constitutive equations is automatically
satisfied for all processes.

In attempting to simulate the response of SMAS and facial skin, it was first assumed that the strain
energies associated with {J, 8, 41, o1} could each be specified by separate functions which may or may not
have exponential terms. Specifically, the term associated with dissipation (o) was specified using an ex-
ponential form, whereas the other terms were of polynomial form. However, simulation of the resulting
equations indicated that the stiffness of the response to dissipative distortional deformation increased so
much, relative to say the response to volumetric deformation, that the total response became unphysical
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with almost no distortional deformation and almost total volumetric deformation. Consequently, it was
found necessary to include all terms in the same exponential function (26) so that the relative importance of
the responses to volumetric and distortional deformations would remain the same even when the stiffness of
each of these responses is nonlinear. This causes the response of the elastic component {T"), T® T™} to be
coupled with that of the dissipative component {T} through the exponential term in the shear modulus
(30).

The constitutive equation for the function I' in the evolution Eq. (15a) for the elastic distortional de-
formation B}, associated with the dissipative component, and for the evolution of a hardening-type vari-
able, like that associated with (6), remains quite general. In this regard, it is well known that evolution
equations of the type (15a) for viscoplastic response usually are stiff differential equations that can cause
unphysical numerical instabilities. To eliminate this problem, special methods (Rubin, 1989; Rubin and
Attia, 1996) have been developed, which are motivated by the radial return method, proposed by Wilkins
(1964) for rate-independent plasticity.

To simplify the integration procedure, the functional form for I" is written in terms of strain measures
instead of stress measures. To this end, it is convenient to introduce a measure f3,, of elastic distortional
deformation associated with the dissipative component

/3 1 "
ﬁde = EBde : Bde> (32)

which, in view of the expressions (29) and (31), can be seen to be related to the von Mises effective stress
associated with the dissipative component. Moreover, in order for the resulting constitutive equations to
satisfy the physical feature (P6), the functional form for I' is proposed as

F[FlJeré]exp[%{ﬂL;}zn}, (33)

where I') and I'; and n are material constants. The effective total distortional deformation rate ¢ is defined

by
s:\/gn’-n’, D' =D-{D-1LI, (34)

and f is a hardening measure related to strain instead of stress. This theoretical form is a modified version
of the unified constitutive equations developed by Bodner and Partom (1975) and Bodner (1987), and used
by Rubin et al. (1998) to model soft tissue. In particular, it was found that a better match with the ex-
perimental data could be obtained by not dividing the expression in (33) by 4., which would be similar to
the form (2b). Also, it can be seen that when I'; ¢ dominates '} in (33), then the evolution equation (15a)
becomes nearly rate independent, which is a necessary feature to be consistent with the physical observation
(P6).

As previously discussed, the hardening variable f is used to model the effective hardening associated with
fluid flow through the cells of the tissue. Here, 5 is determined by the evolution equation

. riry + ré ,
b= | Tha = b, (33)

where r—r5 are additional positive material constants. For simplicity, the value of »; is taken to be very
small so that coefficient of I is given by r| for stress relaxation tests with ¢ = 0, and by r, for loading with
¢ > 0. However, a more general function for I' could be considered if more experimental data were
available to determine the functional dependence on deformation rate. Also, the recovery rate is controlled
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by the constants r4 and rs. In particular, for a stress relaxation test with constant deformation (D = 0), the
hardening variable 8 will eventually recover to zero, which causes B}, to approach I, so that the deviatoric
stress T associated with the dissipative component relaxes to zero. Under these conditions the total stress
is due solely to the response of the elastic component of the tissue.

In summary, the stress is determined by the constitutive equations (26), (27) and (29), which depend on
the elastic constants

{10, 4}, (36a)
{ml,mz,m3,m4}. (36b)

The evolution equation (15a) for the elastic distortional deformation B},, associated with the dissipative

component, depends on the material constants in (33)

{I'y,T,,n}, (37)
and the evolution equation (35) for the hardening variable § depends on the material constants

{ri,r}, (38a)

{rs,ra,rs}. (38b)
Moreover, initial conditions must be specified for the quantities

{/, B, By, my, B}, (39)

in order to integrate the evolution equations (13a), (13b), (15a), (20) and (35), respectively. Once
these equations have been integrated, the stretch 4, can be determined by the formula (19c). Furthermore,
numerical integration algorithms for the evolution equations (15a) and (35) are briefly described in Ap-
pendix A.

5. Examples

In order to model the experiments on SMAS and facial skin shown in Figs. 1 and 2, it is necessary to
consider the response to uniaxial stress. To this end, let e; be a fixed orthonormal set of rectangular
Cartesian base vectors and consider the motion specified by

x| = a1 X, Xy = arXs, X3 = ax X3, (40)

where X; and x; are the components of X and x, respectively, relative e;, and the stretches a; and a, are
functions of time. For simplicity, the engineering strains &y, &» and ¢, are defined by

e =a; — 1, & =ay — 1, ey =J — 1, (41)

with ¢;; being the axial strain, &, being the lateral strain, and ¢, being the volumetric strain. In the following
examples, the motion will be characterized by specifying &;; to be piecewise constant, and the value of a,
will be determined by iteration on the condition that the lateral component 7y, of stress vanishes.

Next, it can be shown that for the motion (40), the velocity gradient L equals the rate of deformation
tensor D, which is a diagonal tensor. Consequently, with the assumption that in the initial configuration
(/=1,B =1 B, =1, m = e)), the evolution equations (13a), (13b), (15a), and (20) can be integrated to
deduce that

F=a(ei®@e)+me:Re +e;®e;), (42a)

J = alag, (42b)
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a 14 PREL
B = {—] (e, ®e) + {—] (e2®e; +e;®e;), (42¢)
a) a
m; = aep, (42(1)
/11 =da, (426)
/ 2 1
Bde:ad(el®e1)+a—d(e2®e2+e3®e3), (42f)
where the quantity a4 is determined by the evolution equation (15a) which reduces to
ad 2 0(31 -1
—==(Dy —Dxn)—-T . 43
2~ 3P~ Dn) {1+2a3 (43)

It then follows from (29) and (42a)—(42f) that the nonzero components of the stresses relative to e; are given
by

1
-]

J
2 (Ta 143 123 |

2 _ 1 2 2 2 2
T1(1>=m2,u.] 13{[61—2} - L—l} ) T2(2>:T3(3):—§T1<1),
1) = my " ay (@ — 1™, ) =13 =0,

2 1 |

4 _ 4 4 4

Tl(l):NJ 13{‘13_%}7 T2<2):73(3):_§T1(1)~ (44)

Also, the nonsymmetric Piola—Kirchhoff stress IT is related to the Cauchy stress T by the formula
mn=JTF ", (45)

so that for this deformation, the component I1;; of the engineering stress it given by
J
I, = [a—}Tn = diTy). (46)
1

The experiments that were performed by Har-Shai et al. (1996) are not sufficient to determine the fourteen
material constants (36a), (36b), (37), (38a) and (38b). Here, the seven material constants (36a), (37) and
(38a) are determined by matching those experiments, and the remaining seven constants (36b) and (38b) are
specified to exhibit specific physical features of the model. A procedure for determining the complete set of
material constants from more extensive experimental data is discussed in Section 6.

Specifically, the constants (36b) and (38b) were specified by the following reasoning. It is assumed that
the main response to volumetric deformation T" can be characterized by the volumetric response of water.
Therefore, it is convenient to specify the constant m; in terms of the bulk modulus &; of water, such that

ky =22 GPa with m; = ﬁ (47)

Ho
Furthermore, it is recalled that the constitutive equations in Rubin et al. (1998) successfully matched the
experimental data in Figs. 1 and 2 even though they did not include any purely elastic component.
Therefore, it is expected that the predominant response of these tissues is due to the elastic distortional
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deformation Bée associated with the dissipative component. For this reason the constants {m,, m3} asso-
ciated with the elastic distortional deformation and the fiber responses are taken to be small, and the value
of m4 was arbitrarily set equal to unity. The value of r; was set to be small enough to separate the effects of
hardening during loading and relaxation tests. Also, the value s was arbitrarily set equal to unity, and the
value r, was set to be small enough not to cause significant recovery of hardening during the cycles of
loading and stress relaxation, but was chosen to be large enough to cause significant recovery of hardening
over a 24 h period.

Table 1 records the material constants for SMAS and facial skin which cause the theoretical predictions
shown in Figs. 1 and 2 to be in good agreement with the experimental data. These material constants have
been divided into two sets: those which are determined by the experimental data, and those which have been
specified as described above.

The material response exhibited by the experimental data in Figs. 1 and 2 indicates that both SMAS and
facial skin are highly nonlinear and dissipative in the range of strains and strain rates tested. This means
that both elastic and dissipative effects are coupled so that the determination of material constants is
complicated. The procedure used to determine the values given in Table 1 requires the user to perform a
number of simulations in order to discover which regions of the material response are most affected by
which parameters. Unfortunately, without additional experimental data this procedure does not lead to a
unique set of material values.

In determining the material constants, the values of n in Eq. (33) were taken to be the same as those
determined by Rubin et al. (1998), with the lower value of n (for facial skin) causing more dissipation (i.e.
SMAS responds more elastically than skin). The initial slope of the loading curve in cycle 1 is mainly
controlled by the constants {u,, 2}, and the nonlinearity of the unloading curves is mainly controlled by
the constant ¢. The value of I'| influences both the dissipation in cycle 3 and the rate of stress relaxation in
Figs. 1(b) and 2(b). The constant 7 controls the rate of hardening and the elastic range exhibited in the
cycles 2 and 3, and the constant », controls the shape of the relaxation curves.

The preceding procedure is based on the identification of the material constants with particular response
characteristics under a specific set of loading conditions. However, the resulting equations with the de-
termined material constants should be applicable for all loading histories consistent with the limitations of
the general theory.

Table 1
Material constants for SMAS and facial skin
SMAS Facial skin
Material constants determined by available experimental data
U, (MPa) 2.0 0.9
q 25.0 36.0
I, s™h 0.01 0.009
I, 20.0 10.0
n 1.0 0.5
2 S.0E+3 30.0E+3
7 6.0 15.0
Material constants set to exhibit specific physical features of the model
ki (GPa) 2.2 2.2
my 0.01 0.01
my 1.0 1.0
3 (s7h) 1.0E—10 1.0E—10
ry (57 1.0E—4 1.0E—4

rs 1.0 1.0
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Figs. 1 and 2 show that the theoretical predictions of these constitutive equations are in good agreement
with the experimental data for SMAS and facial skin for both loading and relaxation cycles. The remaining
Figs. 3-7 examine additional features of the response predicted by these equations. Figs. 3 and 4 show
aspects of the response of SMAS during the loading cycle 1 shown in Fig. 1. Specifically, Fig. 3 exhibits two
aspects of the exact nonlinear geometry used in the equations. Fig. 3(a) shows that the Cauchy stress 77,
(stress per unit present area) is larger than the engineering stress I1;;. The response predicted by these
constitutive equations is nearly isochoric with the volumetric strain &, remaining about 10~*. Within the
context of linearized geometry, isochoric deformation would cause the lateral strain to be equal to (—¢;;/2)
instead of the actual value &), predicted by the theory. Therefore, Fig. 3(b) shows the effect of nonlinear
geometry on the lateral strain.

Fig. 4 shows the relative magnitudes of the four axial stress contributions. In particular, notice that for
the specified constants, the value of the stress T](12>, associated with purely elastic distortion, is nearly two
orders of magnitude smaller than the total axial stress 77;; and the value of Tl(f ), associated with the fiber

3.0 0.00 : :
' b
(a) = -0.02 ) -
= § €
& 2.0 T T, - 3 -0.04 N e nt
% —H l" ‘' 'c_s’ \\ M
e LS 5 -0.06 RN -
S 1.0 S . N ]
E ey = -0.08
-0.10 r >
0.0 r ' 0.0 0.1 0.2 0.3
0.0 0.1 ¢ 0.2 0.3 €

Fig. 3. Nonlinear geometrical effects exhibited in the response predicted during the loading cycle 1 for SMAS: (a) comparison of the
Cauchy stress 7}, with the engineering stress I1;;; (b) comparison of the lateral strain &, with that predicted by isochoric linear de-

formation (—é&;,/2).

3.0 ' ' 0.30 !
- T (a) _ ® (b)
= 1(‘1) = 11
S 2.0{ T - g0 e ,- -
~ — - -T® ~ 11 .
2 11 2 Lo
5 1.0 S, S 0.10 -
o) ~ ~ A 7 _,.':,-'
— . __;.—-"- ____-'_'_:.'""
0.0 e 0.00-mzs22s —
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
€ 8Il

Fig. 4. Relative magnitudes of the various components of stress during the loading cycle 1 for SMAS. Comparison of: (a) the total axial
stress 77, with the stress Tf]]) associated with volumetric deformation and the stress T} associated with dissipation; (b) the stress Tflz )
associated with purely elastic distortional deformation, and the stress Tl(f ) associated with the fiber component.
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Fig. 5. Simulated conditioning of SMAS. Loading to ¢; = 0.10, unloading to ¢;; = 0.05, followed by six cycles: (a) between ¢; = 0.05
and 0.10; and (b) between &;; = 0.05 and 0.075. All loading and unloading occurs at the rate &; = £2.0 x 1072 57!,

component, is about an order of magnitude smaller than 7};. The main contributions to the axial stress are
the stress Tl(ll ), associated with volumetric deformation, and the stress T, l(f), associated with the dissipation
component.

These figures demonstrate that the proposed model includes the physical features (P1)—(P3) of soft tissue
which were described in Section 1. The additional physical features (P4) and (P5) can be observed in
the simulations of Fig. 5. Specifically, in Fig. 5, the model for SMAS is loaded to ¢;; = 0.10, unloaded to
€11 = 0.05 and then is subjected to six cycles of loading and unloading, all at the constant
rate &; = £2.0 x 1072 s~!. In Fig. 5(a), the strain range of the additional cycles is between &;; = 0.05 and
0.10, and dissipation occurs at a diminishing rate as the material continues to harden. In contrast, in Fig.
5(b), the strain range of the additional cycles is between &;; = 0.05 and 0.075, and the response is nearly
elastic.

Fig. 6 examines the effect of strain rate on SMAS. Specifically, it is recalled that the cycles 1, 2 and 3 in
the experiments and in the simulations shown in Fig. 1(a) were conducted at different loading rates. The
cycles shown in Fig. 6(a) and (b) are strain controlled and they use the same strain ranges as those in Fig. 1.
However, all of the cycles shown in Fig. 6(a) are loaded at the constant rate &; = £2.0 x 1072 s~!, which is
associated with cycle 1 in Fig. 1(a). Thus, the theoretical curve for cycle 1 in Fig. 6(a) is the same as that
shown in Fig. 1(a). It can be observed that the response to cycle 2 in Fig. 6(a) is almost unaffected by the
increase in strain rate by a factor of 4 compared with cycle 2 in Fig. 1(a), whereas the response to cycle 3 in
Fig. 6(a) is slightly affected by the increase in strain rate by a factor of 20 compared with cycle 3 in Fig. 1(a).
All of the cycles shown in Fig. 6(b) are loaded at the constant rate &, = +2.0 x 10~! s~!, which is 10 times
higher than that used in Fig. 6(a). Comparison of the results in Fig. 6(b) with those in Fig. 6(a) demon-
strates that when the strain rate is high enough, the material response is nearly rate insensitive, which is
consistent with the physical feature (P6).

Fig. 7 shows the effect of recovery of hardening, which is associated with inward flow of fluid to the
tissue. Specifically, in Fig. 7, SMAS is loaded to &;; = 0.1 at a constant strain rate é;; = 2.0 x 1072 s7!, and
then the strain is held constant and the material is allowed to relax. Fig. 7(a) shows the short-time response
in which the stress relaxes and the hardening variable f§ continues to increase due to dissipation. Fig. 7(b)
shows the long-time response in which the stress continues to relax as the hardening variable decreases due
to recovery. In particular, it can be seen that the stress 7, l(f) associated with the dissipative component
decreases towards zero, whereas the stress Tl(f ), associated with the fiber component, remains relatively
constant.
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Fig. 6. Cyclic loading of SMAS showing near rate-insensitive response. All cycles are loaded at the same rate: (a) &; = £2.0 x 1072 s71;
(b) & = £2.0x 107! s7!.
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Fig. 7. Relaxation of SMAS. Loading to &;; = 0.1 at a rate of &; = 2.0 x 1072 s™! followed by stress relaxation: (a) over a short period,
and (b) over a long period, with recovery of hardening.

6. Conclusions

In the previous sections, a set of three-dimensional constitutive equations has been proposed for
modeling the nonlinear dissipative response of soft tissue. These equations model the tissue as a composite
of elastic and dissipative components. The elastic component includes purely elastic response to dilatation,
distortion and the stretch of material fiber components, and the dissipative component responds to dis-
tortional deformations. Specific functional forms have been proposed in Section 4, and material constants
have been determined which yield good agreement with uniaxial stress experiments on SMAS and facial
skin. The equations have been shown to exhibit the physical features (P1)—(P6) of soft tissue that have been
described in Section 1. In particular, it is noted that, in contrast with standard viscoelastic models of tissues,
the proposed constitutive equations include the total deformation rate in evolution equations in order to
reproduce the observed physical feature (P6) that the hysteresis loops of most biological soft tissues are
nearly independent of the strain rate (Fung, 1993).

As previously mentioned, the experiments of Har-Shai et al. (1996) are not sufficient to determine all of
the material constants in the specific model of Section 4. However, an experimental procedure for deter-
mining the responses TV, T?, T® of the elastic components and the response T of the dissipative

component could be devised as follows:
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The evolution Eq. (35) for the hardening variable f§ is phenomenological in nature and attempts to model
the observed hardening due to loss of fluid during loading and dissipation, as well as recovery of hardening
due to re-absorption of fluid. In particular, it follows from (15a)-(15d), (29), (33), and (35) that if the
material is held at constant strain over a long time period, then both f and the stress T, due to the
dissipative component, approach zero. Consequently, the only remaining stresses are TV, T? and T®
associated with the elastic components. This means that by performing experiments with different homo-
geneous total deformations, followed by long-time relaxation periods, it is possible to determine the con-
stitutive equations for T, T® and T®. Specifically, since the fiber component (29) cannot support
compression, the constants {m; u,, maf,, ¢} can be determined by matching uniaxial stress tests in directions
perpendicular to the fiber component. Then, the constants {msy,, ms} can be determined by matching
uniaxial stress tests in the direction of the fiber component.

Once the material constants for purely elastic response have been determined, short-time loading and
stress relaxation tests can be used to determine the dissipative material constants. Specifically, it is expected
that {y,} can be determined by considering the Poisson effect in rapid uniaxial stress loading. Then, {I',, n,
r»} can be determined by matching the response to rapid loading—unloading-reloading cycles. Next, it is
assumed that the recovery of hardening in (35) occurs over relatively long time periods, so that the short-
time response in relaxation tests (¢ = 0) can be used to determine the constants {I';} in (33), and {r, 73} in
(35). Then, long-time relaxation tests can be used to determine the constants {rs, s} in (35). In this regard,
it should be noted that since comparison with a limited set of experiments is necessarily somewhat sub-
jective, this general procedure may not lead to a unique set of material constants, which is typical when
considering nonlinear time-dependent constitutive equations.

The equations proposed in this paper provide an alternative theoretical structure to the standard vi-
scoelastic formulations that have been used to model soft tissue. The specific functional forms for the
constitutive equations are rather simple and they model the main physical features of biological tissue.
However, the functional forms for the evolutions equations can be modified to include more complicated
physical features as additional experimental data becomes available.
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Appendix A. Numerical integration of the evolution equations

Following the numerical procedures developed in Rubin (1989), Rubin and Attia (1996), the evolution
equation (15a) is integrated by assuming that L is constant over the time interval At =, — ¢;, and by
considering an elastic trial solution B}, which is approximated by

Bii*e = Biiel + At[LBélel + BiielLT - %(D ! I)Biiel}ﬂ (Al)

where for convenience, B);,; and B}, denote the values of B, at times ¢ and 1,, respectively. Also, the elastic
trial values B}, and f8}, are defined by

YE3 123 1 1E3 * 3 % 1%
Bde = Bde - g (Bde ’ I)L ﬁde = \/ EBzie ’ Bde' (AZ)
Then, the evolution Eq. (15a) can be integrated implicitly by taking
2162 = Bge - Atr(lz)Ad(lz). (A3)
Consequently, with the help of (15¢), the deviatoric part of (A.3) yields
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[+ A¢T()] B, = B (A4)
Now, the notion of radial return suggests that

B:i/eZ = iBZ:’ ﬂeZ = ﬁde(tz) = )‘ﬁ;e’ O g )“ < 17 (AS)

where / is a scalar (not to be confused with the stretch of a material fiber component) that is determined by
the equation

1 =1+ AtT(1)]0. (A.6)

Thus, it follows that A equals unity for elastic response (I = 0) and is less than unity for dissipative re-
sponse. Moreover, assuming that the hardening variable § does not change too rapidly during a single time
step, the value of A can be determined by iteration until (A.6) is satisfied with I'(#;) given by

L[ )™
- = A.
At | (A7
where f(#,) is the value of f associated with the beginning of the time step. Once 4 has been determined, B),,

and f,, are given by (A.5). Also, the value of distortional deformation B(#,) at the end of the time step can
be written in the form

Béle(tz) = Bge2 + %ﬁl (t2)17 (Ag)

F(tz) = [Fl +F2é]exp

where the value of the invariant B, (#,) is determined by a cubic equation which requires B}, to be a uni-
modular tensor (Rubin and Attia, 1996).

For the specific deformation considered in the examples in Section 4, the elastic trial value a}; associated
with integrating (43), with I" vanishing, can be expressed in the form

a:; = Cld(tl) eXp I%At(D“ — Dzz)] . (A9)

Then, the elastic trial value B, becomes

1
B, = ai (e @e) +

a—*(ez®e2+e3®e3). (AlO)
d

Also, the values of D;; and D,, are approximated by
éll é22
D =—"——, Dy =—"_. A1l
U g(n) + A 27 b)) + Mz (A1)

Finally, simple Euler integration is used to determine the value of hardening associated with the evolution
equation (35)

B(t) = B(t1) + At

3

{”%?é}rmm(m — By | (A12)
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