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Abstract

A set of three-dimensional constitutive equations is proposed for modeling the nonlinear dissipative response of soft

tissue. These constitutive equations are phenomenological in nature and they model a number of physical features that

have been observed in soft tissue. The equations model the tissue as a composite of a purely elastic component and a

dissipative component, both of which experience the same total dilatation and distortion. The stress response of the

purely elastic component depends on dilatation, distortion and the stretch of material fibers, whereas the stress response

of the dissipative component depends on distortional deformation only. The equations are hyperelastic in the sense that

the stress is obtained by derivatives of a strain energy function, and they are properly invariant under superposed rigid

body motions. In contrast with standard viscoelastic models of tissues, the proposed constitutive model includes the

total deformation rate in evolution equations that can reproduce the observed physical feature that the hysteresis loops

of most biological soft tissues are nearly independent of strain rate (Biomechanics, Mechanical Properties of Living

Tissues, second ed. (1993)). Material constants are determined which produce good agreement with uniaxial stress

experiments on superficial musculoaponeurotic system and facial skin.
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1. Introduction

Understanding the response of living tissues to mechanical loads is essential to a wide range of problems
that include the design of prosthetic devices and the evaluation of optimal surgical and suturing procedures.
This field of study has received considerable attention over the last few decades and much of the research
has been reviewed in the book on biomechanics by Fung (1993).

Living tissue is a complicated composite structure that is composed of a number of materials. For ex-
ample, superficial musculoaponeurotic system (SMAS) and facial skin both contain elastin, collagen, fat
cells and water. Moreover, many biological tissues are porous and allow blood flow to supply nutrients to
the cells that form the building blocks of the tissue. Biochemical processes, osmotic pressure, growth of
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cells, aging, and environmental factors all contribute to the complicated response of tissue. Also, the
material behavior is nonlinear, time dependent and anisotropic.

From a fundamental point of view, it is desirable to develop mathematical models which include all of
the important physical processes that are active in living tissues. Specific attempts to model the nonlinear
deformations and fluid flow processes in porous media can be found in Vankan et al. (1997) and Huyghe
and Janssen (1999).

Such fundamental approaches usually lead to complicated nonlinear partial differential equations.
Consequently, attempts to simplify these models by using phenomenological constitutive equations are
desirable and can provide sufficient descriptions of the material response for many applications. For ex-
ample, cardiac muscle has been modeled (Choung and Fung, 1986; Humphrey and Yin, 1987; Horowitz
et al., 1988; Humphrey et al., 1990) using phenomenological constitutive equations which include non-
linear elasticity, viscoelasticity and anisotropy due to the response of oriented fibers. Also, the general
modeling of soft tissue has been discussed recently by Holzapfel (2001).

Har-Shai et al. (1996) performed mechanical uniaxial stress tests on recently excised strips of facial tissue
which included cycles of loading, unloading, reloading at various strain rates, and stress relaxation. These
experimental results were modeled by Rubin et al. (1998), and the experimental data are shown in Fig. 1 for
SMAS and in Fig. 2 for facial skin (note that the predictions shown in these figures are based on the new
model presented below). In these figures P11 is the engineering axial stress (force per unit reference area)
and e11 is the engineering axial strain (change in length per unit reference length), both of which were
measured in the experiments. Figs. 1(a) and 2(a) show three cycles of loading with the magnitude of
the strain rate _ee11 for cycle 1 being greater than that for cycle 2, which is greater than that for cycle 3. The
relaxation tests shown in Fig. 1(b) were performed on a different sample of SMAS than that used in the
cyclic loadings of Fig. 1(a), whereas the relaxation tests shown in Fig. 2(b) were performed on the same
sample of facial skin used in the cyclic loadings of Fig. 2(a), with the relaxation tests being performed after
the cyclic loading tests. Moreover, it will be shown later in Fig. 6 that the differences between the responses
to these cycles of loading are due to changes in the internal structure (internal state variables) of the
material and not due to the differences in the imposed strain rates.

These figures exhibit material response that seems to be representative of many soft tissues. Specifically,
Fung (1993, p. 262) identifies the following physical features

(P1) a nonlinear stress–strain relationship,
(P2) a hysteresis loop in cyclic loading and unloading,

Fig. 1. Response of SMAS: (a) loading and unloading cycles (cycle 1: _ee11 ¼ �2:0� 10�2 s�1; cycle 2: _ee11 ¼ �5:0� 10�3 s�1; cycle 3:

_ee11 ¼ �1:0� 10�3 s�1); and (b) stress relaxation cycles ( _ee11 ¼ �5:0� 10�3 s�1 for loading and unloading).
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(P3) stress relaxation at constant strain,
(P4) preconditioning in repeated cycles (a tendency to approach a stable cycle, which is associated primar-

ily with elastic response).

The preconditioning phenomena is somewhat apparent in Fig. 1(a) where cycling between fixed stress
levels causes the hysteresis loops to reduce in width. This indicates that the material response becomes more
elastic. Furthermore, with regard to preconditioning, Fung (1993, p. 262) states that:

The reason that preconditioning occurs in a specimen is that the internal structure of the tissue changes
with the cycling. By repeated cycling, eventually a steady state is reached at which no further change
will occur unless the cycling routine is changed. Changing the upper and lower limits of the cycling will
change the internal structure again, and the specimen must be preconditioned anew.

Moreover, the additional physical feature

(P5) stress relaxation from a given stress level reduces consequent to repeated cycling,

can be observed from Figs. 1(b) and 2(b).

In addition to the characteristics (P1)–(P5), observations on soft tissues indicate that hysteresis loops to
the same stress levels are nearly independent of strain rate over a wide range of rates (Fung, 1993, p. 281).
This feature can be stated as an additional property

(P6) the hysteresis loops are nearly independent of strain rate.

The main objective of this paper is to focus attention on modeling the dissipative response of soft tissue.
As previously mentioned, detailed modeling of the physical processes that occur in composite structures
like soft tissue is quite complicated. Consequently, here attention will be focused on phenomenological
constitutive equations.

With a viscoelastic approach (e.g. Neubert, 1963; Puso and Weiss, 1998; Pioletti and Rakotomanana,
2000), hereditary integrals are introduced to account for the effects of the loading history. These integrals
are usually represented in terms of a finite number of relaxation times so they cannot predict the physical
response (P6). An alternative model for the time-dependent response of tissues, motivated by the unified

Fig. 2. Response of facial skin: (a) loading and unloading cycles (cycle 1: e11 ¼ �1:0� 10�2 s�1; cycle 2: _ee11 ¼ �2:5� 10�3 s�1; cycle 3:

_ee11 ¼ �5:0� 10�4 s�1); and (b) stress relaxation cycles ( _ee11 ¼ �2:5� 10�3 s�1 for loading and unloading).
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constitutive equations for elastic-viscoplastic materials proposed by Bodner and Partom (1975), and
Bodner (1987), has been developed by Rubin et al. (1998). Instead of using hereditary integrals, this model
uses history dependent state-variables which are determined by evolution equations for their time rates of
change.

More specifically, the work of Rubin et al. (1998) developed one-dimensional constitutive equations
which modeled all of the physical features (P1)–(P6) and matched the experimental data of Har-Shai et al.
(1996) fairly well. The model developed here also models these physical features but it improves on that
previous model in three main respects:

(1) it is a full three-dimensional model,
(2) it includes anisotropic effects of material fiber orientations,
(3) it includes elastic components and recovery of hardening (which models recovery of fluid in the un-

loaded cells) that lead to full recovery of the unloaded shape over time.

An outline of the contents of this paper is as follows: Section 2 provides a discussion of the previous
model (Rubin et al., 1998), Section 3 describes the general constitutive equations and Section 4 proposes
specific functional forms for the strain energy and the evolution equations. Section 5 describes examples of
uniaxial stress and shows that the proposed equations can predict good agreement with experiments on
SMAS and facial skin. Section 6 presents conclusions and Appendix A briefly describes aspects of ap-
propriate numerical integration procedures.

Also, throughout the text, a � b denotes the dot product between two vectors a and b; A � B ¼ trðATBÞ
denotes the inner product between two second order tensors A and B; and the symbol � denotes the tensor
product.

2. Discussion of the previous model

In the previous one-dimensional model (Rubin et al., 1998), the elastic strain ee is determined by inte-
grating an evolution equation of the form

_eee ¼ _ee � Ai; ð1Þ
where _ee is the total deformation rate and the inelastic strain rate Ai is specified by the constitutive equation

Ai ¼ Dee; ð2aÞ

D ¼ aþ bj _eej
jeej

exp

"
� 1

2

Z
reff

� �2n
#
; ð2bÞ

reff ¼ jrj: ð2cÞ
Also, the stress r is a nonlinear function of the elastic strain

r ¼ rðeeÞ: ð3Þ
In these equations, the constant n controls the sharpness of the transition from primarily elastic to vi-
scoplastic response and also controls rate sensitivity, Z is a measure of hardening, the constant a is im-
portant in relaxation tests ðj _eej ¼ 0Þ, and the constant b dominates the inelastic response during loading.
This model was used (Rubin et al., 1998) to obtain good agreement with the available experimental data.

In modeling metal plasticity, the term bj _eej in (2b) is usually set to zero so that the evolution equation (1)
is explicitly rate dependent. However, in modeling SMAS and facial skin it was found that the term bj _eej is
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significant during the loading cycles. More specifically, if a in (2b) vanishes, then the response of the
evolution equation (1) becomes explicitly independent of time so that the physical condition (P6) will be
satisfied. Consequently, by introducing the total deformation rate into the inelastic term Ai in (1), (2a), it is
possible to satisfy the condition (P6) about the near rate independence of the hysteresis loops without the
need for a large number of discrete relaxation times. Also, integration of the evolution equation (1) does not
increase computer storage requirements as can occur in hereditary integral approaches to inelasticity.

During the experiments reported by Har-Shai et al. (1996) on recently excised facial skin, it was observed
that liquid drops appeared on the tissue’s outer surface as it was being loaded. In that paper it was
speculated that the fluid transport associated with stressing the specimen was responsible for the apparent
hardening phenomena. Thus, from the phenomenological point of view, this effect of fluid transport was
modeled (Rubin et al., 1998) by proposing an evolution equation for the hardening variable Z of the form

_ZZ ¼ mDreff ; ð4Þ
where m is a function that controls the rate of hardening and D is given by (2b).

Although Eqs. (1)–(4) provide a constitutive model that is consistent with the physical features (P1)–(P6)
and produces reasonably good predictions of the experimental data, it neglects the physical phenomena
that soft tissue in situ eventually recovers its original shape and its original stress–strain curves after it has
been deformed and unloaded for sufficient time (neglecting aging effects). This presumably occurs as fluid is
redistributed in the recovering tissue. Within the one-dimensional context, this phenomena can be modeled
by including both an elastic component and recovery of hardening, which models recovery of fluid in the
unloaded cells. In particular, a nonlinear version of a simple three element model with an elastic spring (the
elastic component) can be used in parallel with a Maxwell element (the dissipative component) consisting of
an elastic spring in series with a viscous dashpot. Specifically, the stress is assumed to be an additive
function of the form

r ¼ reðeÞ þ rdðedeÞ; reff ¼ jrdj; ð5Þ
where re is the stress response of the elastic component, which depends on total strain e only, and rd is the
stress response of the dissipative component, which depends on the elastic strain ede of the dissipative
component. Moreover, the evolution equation (4) for hardening can be modified to take the form

_ZZ ¼ mDreff � R; ð6Þ
where the hardening recovery term R is a nonnegative function of the hardening variable that vanishes
when Z vanishes

R ¼ 0 for Z ¼ 0: ð7Þ
For appropriate constitutive equations, the unloaded tissue with zero total stress r, will recover its original
length (e ¼ 0) as ede and Z evolve towards zero.

3. General constitutive equations

Using standard notions in continuum mechanics, the position X of a material point in the fixed reference
configuration is mapped to the position x in the present configuration at time t. Moreover, a material line
element dX in the reference configuration is deformed into the material line element dx in the present
configuration, such that

dx ¼ FdX; ð8aÞ

F ¼ ox=oX; ð8bÞ
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J ¼ det F > 0; ð8cÞ

_FF ¼ LF; ð9aÞ

L ¼ ov=ox; ð9bÞ

D ¼ 1
2
ðLþ LTÞ ¼ DT; ð9cÞ

where F is the deformation gradient, J is the dilatation, L is the velocity gradient, D is the rate of defor-
mation tensor, and a superposed (�) denotes material time differentiation holding X fixed. Also, within the
context of the purely mechanical theory, it can be shown that the rate of dissipation D remains nonnegative

D ¼ T �D� q _wwP 0; ð10Þ

where T is the Cauchy stress, q is the current mass density and w is the strain energy function per unit mass.
The following analysis the tissue is considered to be a composite of elastic and dissipative components,

and the affine assumption is used which considers each of these components to experience the same total
strain. The elastic component depends on total deformation measures from the unstressed reference con-
figuration and is assumed to be composed of a structure which responds to both total dilatation and
distortion, as well as fiber constituents which respond to stretching. Also, the dissipative component is
assumed to respond to distortional deformation.

In modeling the elastic component, it is recalled that for nonlinear isotropic elastic response the strain
energy can be expressed as a function of the invariants of various deformation tensors. Here, use is made of
the work of Flory (1961) to separate the total deformation tensor B into the dilatation J, which is a pure
measure of volumetric deformation, and the symmetric tensor B0, which is a pure measure of total dis-
tortional deformation, such that

B ¼ FFT; ð11aÞ

B0 ¼ J�2=3B; ð11bÞ

detðB0Þ ¼ 1: ð11cÞ

Since B0 is a unimodular tensor, it follows that it has only two independent nontrivial invariants which can
be expressed as

b1 ¼ B0 � I; b2 ¼ B0 � B0: ð12Þ

Also, using (9a) it can be shown that J and B0 can, alternatively, be determined by integrating the evolution
equations

_JJ ¼ JD � I; ð13aÞ

_BB0 ¼ LB0 þ B0LT � 2
3
ðD � IÞB0: ð13bÞ

Thus, the material derivatives of b1 and b2 can be expressed in the forms

_bb1 ¼ 2½B0 � 1
3
ðB0 � IÞI
 �D; ð14aÞ

_bb2 ¼ 4½B02 � 1
3
ðB02 � IÞI
 �D: ð14bÞ

In modeling the dissipative component, it is recalled (Rubin, 1994a,b, 1996) that physically consistent
constitutive equations for elastically anisotropic response of elastic–viscoplastic materials can be developed

5086 M.B. Rubin, S.R. Bodner / International Journal of Solids and Structures 39 (2002) 5081–5099



using the work of Eckart (1948), Besseling (1968), and Leonov (1976). Specifically, for large deformations
of elastically isotropic elastic–viscoplastic materials, it is convenient to introduce a symmetric unimodular
tensor B0

de, which is a pure measure of elastic distortional deformation associated with the dissipative
component. This tensor is determined by integrating the evolution equation

_BB0
de ¼ LB0

de þ B0
deL

T � 2
3
ðD � IÞB0

de � CAd; ð15aÞ

detðB0
deÞ ¼ 1; ð15bÞ

Ad ¼ B0
de �

3

B0�1
de � I

( )
I; ð15cÞ

Ad � B0�1
de ¼ 0; ð15dÞ

where the rate of inelastic deformation is determined by the scalar function C and the symmetric tensor Ad.
The tensor Ad in (15d) is one of the simplest forms that causes elastic distortional deformation B0

de to re-
main a unimodular tensor (15b), and causes it to evolve towards the value I. Moreover, since B0

de is a
unimodular tensor it also has only two independent invariants

a1 ¼ B0
de � I; a2 ¼ B0

de � B0
de: ð16Þ

Furthermore, the material derivatives of a1 and a2 can be expressed in the forms

_aa1 ¼ 2½B0
de � 1

3
ðB0

de � IÞI
 �D� CAd � I; ð17aÞ

_aa2 ¼ 4½B02
de � 1

3
ðB02

de � IÞI
 �D� 2CAd � B0
de: ð17bÞ

Models of many soft tissues include explicit modeling of arrays of elastic fibers which have specific ori-
entations in the tissues (e.g. Puso and Weiss, 1998; Holzapfel, 2001). In this regard, it is convenient to recall
that with the help of (8a) and (9a), that the time rate of change of a material line element dx can be ex-
pressed in the form

d _xx ¼ Ldx: ð18Þ

Here, the anisotropic response of the tissue is modeled by N fiber components, each of which models the
elastic response of an array of fibers oriented is a specific material direction. Moreover, in view of the affine
assumption, arrays of fibers that have the same material orientation can be treated as a single fiber com-
ponent which deforms like a line element. Specifically, let the unit vectors MI (I ¼ 1; 2; . . . ;N ) characterize
the orientations of these fiber components in the reference configuration, and let the vectors mI characterize
the orientations and stretches of these deformed fiber components in the present configuration, such that

mI ¼ FMI ; ð19aÞ

MI �MI ¼ 1; ð19bÞ

kI ¼ jmI j; ðno sum on IÞ; ð19cÞ
where kI is the stretch of the line element mI , and the usual summation convention over repeated indices is
suspended for capital indices. Thus, with the help of (18) it can be shown that alternatively, mI can be
determined by integrating the evolution equation

_mmI ¼ LmI : ð20Þ
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Furthermore, the material derivatives of kI can be expressed in the forms

_kkI ¼
1

kI
ðmI �mIÞ �D ðno sum on IÞ: ð21Þ

Assuming that the anisotropic response of tissue is due solely to the presence of specific arrays of fibers, it
possible to model the nonlinear inelastic response of the tissue by taking the strain energy function w in the
form

w ¼ wðJ ; b1; b2; a1; a2; kIÞ for I ¼ 1; 2; . . . ;N : ð22Þ
Next, substituting (22) into (10), the resulting expression becomes a coefficient times D which includes the
stress T and additional terms. Taking this coefficient of D equal to zero leads to the constitutive equation
for stress in the form

T ¼ �pIþ T0; T0 � I ¼ 0;

p ¼ �q0

ow
oJ

�
XN
I¼1

1

3
q0

ow
okI

J�1kI ;

T0 ¼ 2q0

ow
ob1

J�1 B0
�

� 1

3
ðB0 � IÞI

	
þ 4q0

ow
ob2

J�1 B02
�

� 1

3
ðB02 � IÞI

	
þ 2q0

ow
oa1

J�1 B0
de

�
� 1

3
ðB0

de � IÞI
	

þ 4q0

ow
oa2

J�1 B02
de

�
� 1

3
ðB02

de � IÞI
	
þ
XN
I¼1

q0

ow
okI

J�1 1

kI
ðmI

�
�mIÞ �

1

3
ðmI �mIÞI

	
; ð23Þ

and to the following expression for the dissipation (10)

D ¼ q0

ow
oa1

J�1CAd � Iþ 2q0

ow
oa2

J�1CAd � B0
de P 0; ð24Þ

where q0 is the reference value of the mass density, and use has been made of the conservation of mass in
the form

qJ ¼ q0: ð25Þ
The constitutive equations (23) are motivated by the necessary conditions required for the dissipation D to
vanish whenever the material response is purely elastic (C ¼ 0). However, in the present context, the
functional form for C is left unspecified so that the Eqs. (23) and (24) are only sufficient conditions for the
inequality (10) to be satisfied for all processes. These equations are hyperelastic in the sense that the stress is
obtained by derivatives of a strain energy function, and it can be shown that they are properly invariant
under superposed rigid body motions.

In (23) it can be seen that the dilatation J mainly influences the pressure p, the distortional deformation
measures a1, a2, b1, b2 mainly influence the deviatoric stress T0, and the stretches kI influence both p and T

0.
Also, it is important to emphasize that in modeling soft tissue, the stress relaxation effects associated with
the term CAd no longer model the effects of plasticity (as in the case of metals), but rather model the
temporary internal microstructural changes associated with fluid flow and elastic distortion of cells.

4. Specific constitutive equations

The objective of this section is to develop specific simple constitutive equations to model the responses of
SMAS and facial skin that are shown in Figs. 1 and 2. Also, the constitutive equations will be used to
simulate response characteristics to loadings which demonstrate various physical features of the modeling.
A number of polynomial and exponential functional forms for the strain energy w have been recorded in
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Table 2 of Pioletti and Rakotomanana (2000). For simplicity, it will be assumed here that only one array of
fibers is active and that the strain energy function takes the form

q0w ¼ l0

2q
½expðqgÞ � 1
; g ¼ g1ðJÞ þ g2ðb1Þ þ g3ðk1Þ þ g4ða1Þ; ð26Þ

where l0 is a material constant having the units of stress and q is a dimensionless constant that controls
nonlinearity of the moduli for the different stress responses in the composite structure. Here, the function g
separates into four parts, with g1 characterizing the response to total dilatation, g2 characterizing the re-
sponse to total distortion, g3 characterizing the response to stretching of the fiber component, and g4
characterizing the response to distortional deformation of the dissipative component. In particular, these
functions are specified by

g1ðJÞ ¼ 2m1½ðJ � 1Þ � lnðJÞ
; g2ðb1Þ ¼ m2ðb1 � 3Þ;

g3ðk1Þ ¼
m3

m4

hk1 � 1i2m4 ; g4ða1Þ ¼ a1 � 3; ð27Þ

where the material constants m1, m2, m3 have been normalized relative to the constant l0.
Since material fibers are usually coiled, the elastic response to extension is highly nonlinear and the fiber

component, which is modeled here, exhibits essentially zero stiffness to compression because it buckles
(Puso and Weiss, 1998). For this reason, the McAuley brackets

hxi ¼ 1
2
ðxþ jxjÞ; ð28Þ

have been used to eliminate the response to compression of the fiber component (k1 < 1). Furthermore, for
the exponent m4 > 1, the response of the fiber component will have zero stiffness initially in tension, which
is consistent with its zero stiffness in compression.

It now follows from the results (23) that the constitutive equation for the stress associated with as-
sumptions (26) and (27) becomes

T ¼ Tð1Þ þ Tð2Þ þ Tð3Þ þ Tð4Þ;

Tð1Þ ¼ �m1l
1

J

�
� 1

	
I; Tð2Þ ¼ m2lJ�1B00;

Tð3Þ ¼ m3lJ�1 1

k1

hk1 � 1i2m4�1ðm1 �m1Þ; Tð4Þ ¼ lJ�1B00
de; ð29Þ

where l is the nonlinear shear modulus

l ¼ l0 expðqgÞ; ð30Þ
and where the deviatoric tensors B00 and B00

de are defined by

B00 ¼ B0 � 1
3
ðB0 � IÞI; B00

de ¼ B0
de � 1

3
ðB0

de � IÞI: ð31Þ

Also, it can be shown that the dissipation inequality (24) for these constitutive equations is automatically
satisfied for all processes.

In attempting to simulate the response of SMAS and facial skin, it was first assumed that the strain
energies associated with {J, b1, k1, a1} could each be specified by separate functions which may or may not
have exponential terms. Specifically, the term associated with dissipation (a1) was specified using an ex-
ponential form, whereas the other terms were of polynomial form. However, simulation of the resulting
equations indicated that the stiffness of the response to dissipative distortional deformation increased so
much, relative to say the response to volumetric deformation, that the total response became unphysical
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with almost no distortional deformation and almost total volumetric deformation. Consequently, it was
found necessary to include all terms in the same exponential function (26) so that the relative importance of
the responses to volumetric and distortional deformations would remain the same even when the stiffness of
each of these responses is nonlinear. This causes the response of the elastic component {Tð1Þ, Tð2Þ, Tð3Þ} to be
coupled with that of the dissipative component {Tð4Þ} through the exponential term in the shear modulus
(30).

The constitutive equation for the function C in the evolution Eq. (15a) for the elastic distortional de-
formation B0

de associated with the dissipative component, and for the evolution of a hardening-type vari-
able, like that associated with (6), remains quite general. In this regard, it is well known that evolution
equations of the type (15a) for viscoplastic response usually are stiff differential equations that can cause
unphysical numerical instabilities. To eliminate this problem, special methods (Rubin, 1989; Rubin and
Attia, 1996) have been developed, which are motivated by the radial return method, proposed by Wilkins
(1964) for rate-independent plasticity.

To simplify the integration procedure, the functional form for C is written in terms of strain measures
instead of stress measures. To this end, it is convenient to introduce a measure bde of elastic distortional
deformation associated with the dissipative component

bde ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
B00

de � B00
de

r
; ð32Þ

which, in view of the expressions (29) and (31), can be seen to be related to the von Mises effective stress
associated with the dissipative component. Moreover, in order for the resulting constitutive equations to
satisfy the physical feature (P6), the functional form for C is proposed as

C ¼ ½C1 þ C2 _ee
 exp
"
� 1

2

b
bde

� �2n
#
; ð33Þ

where C1 and C2 and n are material constants. The effective total distortional deformation rate _ee is defined
by

_ee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
D0 �D0

r
; D0 ¼ D� 1

3
ðD � IÞI; ð34Þ

and b is a hardening measure related to strain instead of stress. This theoretical form is a modified version
of the unified constitutive equations developed by Bodner and Partom (1975) and Bodner (1987), and used
by Rubin et al. (1998) to model soft tissue. In particular, it was found that a better match with the ex-
perimental data could be obtained by not dividing the expression in (33) by bde, which would be similar to
the form (2b). Also, it can be seen that when C2 _ee dominates C1 in (33), then the evolution equation (15a)
becomes nearly rate independent, which is a necessary feature to be consistent with the physical observation
(P6).

As previously discussed, the hardening variable b is used to model the effective hardening associated with
fluid flow through the cells of the tissue. Here, b is determined by the evolution equation

_bb ¼ r1r3 þ r2 _ee
r3 þ _ee

" #
Cbde � r4b

r5 ; ð35Þ

where r1–r5 are additional positive material constants. For simplicity, the value of r3 is taken to be very
small so that coefficient of C is given by r1 for stress relaxation tests with _ee ¼ 0, and by r2 for loading with
_ee > 0. However, a more general function for C could be considered if more experimental data were
available to determine the functional dependence on deformation rate. Also, the recovery rate is controlled
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by the constants r4 and r5. In particular, for a stress relaxation test with constant deformation (D ¼ 0), the
hardening variable b will eventually recover to zero, which causes B0

de to approach I, so that the deviatoric
stress Tð4Þ associated with the dissipative component relaxes to zero. Under these conditions the total stress
is due solely to the response of the elastic component of the tissue.

In summary, the stress is determined by the constitutive equations (26), (27) and (29), which depend on
the elastic constants

fl0; qg; ð36aÞ

fm1;m2;m3;m4g: ð36bÞ
The evolution equation (15a) for the elastic distortional deformation B0

de, associated with the dissipative
component, depends on the material constants in (33)

fC1;C2; ng; ð37Þ
and the evolution equation (35) for the hardening variable b depends on the material constants

fr1; r2g; ð38aÞ

fr3; r4; r5g: ð38bÞ
Moreover, initial conditions must be specified for the quantities

fJ ;B0;B0
de;m1; bg; ð39Þ

in order to integrate the evolution equations (13a), (13b), (15a), (20) and (35), respectively. Once
these equations have been integrated, the stretch k1 can be determined by the formula (19c). Furthermore,
numerical integration algorithms for the evolution equations (15a) and (35) are briefly described in Ap-
pendix A.

5. Examples

In order to model the experiments on SMAS and facial skin shown in Figs. 1 and 2, it is necessary to
consider the response to uniaxial stress. To this end, let ei be a fixed orthonormal set of rectangular
Cartesian base vectors and consider the motion specified by

x1 ¼ a1X1; x2 ¼ a2X2; x3 ¼ a2X3; ð40Þ
where Xi and xi are the components of X and x, respectively, relative ei, and the stretches a1 and a2 are
functions of time. For simplicity, the engineering strains e11, e22 and ev are defined by

e11 ¼ a1 � 1; e22 ¼ a2 � 1; ev ¼ J � 1; ð41Þ
with e11 being the axial strain, e22 being the lateral strain, and ev being the volumetric strain. In the following
examples, the motion will be characterized by specifying _ee11 to be piecewise constant, and the value of a2
will be determined by iteration on the condition that the lateral component T22 of stress vanishes.

Next, it can be shown that for the motion (40), the velocity gradient L equals the rate of deformation
tensor D, which is a diagonal tensor. Consequently, with the assumption that in the initial configuration
(J ¼ 1, B0 ¼ I, B0

de ¼ I, m1 ¼ e1), the evolution equations (13a), (13b), (15a), and (20) can be integrated to
deduce that

F ¼ a1ðe1 � e1Þ þ a2ðe2 � e2 þ e3 � e3Þ; ð42aÞ

J ¼ a1a22; ð42bÞ
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B0 ¼ a1
a2

� 	4=3
ðe1 � e1Þ þ

a2
a1

� 	2=3
ðe2 � e2 þ e3 � e3Þ; ð42cÞ

m1 ¼ a1e1; ð42dÞ

k1 ¼ a1; ð42eÞ

B0
de ¼ a2dðe1 � e1Þ þ

1

ad
ðe2 � e2 þ e3 � e3Þ; ð42fÞ

where the quantity ad is determined by the evolution equation (15a) which reduces to

_aad
ad

¼ 2

3
ðD11 � D22Þ � C

a3d � 1

1þ 2a3d

� 	
: ð43Þ

It then follows from (29) and (42a)–(42f) that the nonzero components of the stresses relative to ei are given
by

T ð1Þ
11 ¼ T ð1Þ

22 ¼ T ð1Þ
33 ¼ �m1l

1

J

�
� 1

	
;

T ð2Þ
11 ¼ m2lJ�1 2

3

a1
a2

� 	4=3(
� a2

a1

� 	2=3)
; T ð2Þ

22 ¼ T ð2Þ
33 ¼ � 1

2
T ð2Þ
11 ;

T ð3Þ
11 ¼ m3lJ�1a1ha1 � 1i2m4�1; T ð3Þ

22 ¼ T ð3Þ
33 ¼ 0;

T ð4Þ
11 ¼ lJ�1 2

3
a2d

�
� 1

ad

�
; T ð4Þ

22 ¼ T ð4Þ
33 ¼ � 1

2
T ð4Þ
11 : ð44Þ

Also, the nonsymmetric Piola–Kirchhoff stress P is related to the Cauchy stress T by the formula

P ¼ JTF�1; ð45Þ
so that for this deformation, the component P11 of the engineering stress it given by

P11 ¼
J

a1

� 	
T11 ¼ a22T11: ð46Þ

The experiments that were performed by Har-Shai et al. (1996) are not sufficient to determine the fourteen
material constants (36a), (36b), (37), (38a) and (38b). Here, the seven material constants (36a), (37) and
(38a) are determined by matching those experiments, and the remaining seven constants (36b) and (38b) are
specified to exhibit specific physical features of the model. A procedure for determining the complete set of
material constants from more extensive experimental data is discussed in Section 6.

Specifically, the constants (36b) and (38b) were specified by the following reasoning. It is assumed that
the main response to volumetric deformation Tð1Þ can be characterized by the volumetric response of water.
Therefore, it is convenient to specify the constant m1 in terms of the bulk modulus k1 of water, such that

k1 ¼ 2:2 GPa with m1 ¼
k1
l0

: ð47Þ

Furthermore, it is recalled that the constitutive equations in Rubin et al. (1998) successfully matched the
experimental data in Figs. 1 and 2 even though they did not include any purely elastic component.
Therefore, it is expected that the predominant response of these tissues is due to the elastic distortional
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deformation B0
de associated with the dissipative component. For this reason the constants {m2, m3} asso-

ciated with the elastic distortional deformation and the fiber responses are taken to be small, and the value
of m4 was arbitrarily set equal to unity. The value of r3 was set to be small enough to separate the effects of
hardening during loading and relaxation tests. Also, the value r5 was arbitrarily set equal to unity, and the
value r4 was set to be small enough not to cause significant recovery of hardening during the cycles of
loading and stress relaxation, but was chosen to be large enough to cause significant recovery of hardening
over a 24 h period.

Table 1 records the material constants for SMAS and facial skin which cause the theoretical predictions
shown in Figs. 1 and 2 to be in good agreement with the experimental data. These material constants have
been divided into two sets: those which are determined by the experimental data, and those which have been
specified as described above.

The material response exhibited by the experimental data in Figs. 1 and 2 indicates that both SMAS and
facial skin are highly nonlinear and dissipative in the range of strains and strain rates tested. This means
that both elastic and dissipative effects are coupled so that the determination of material constants is
complicated. The procedure used to determine the values given in Table 1 requires the user to perform a
number of simulations in order to discover which regions of the material response are most affected by
which parameters. Unfortunately, without additional experimental data this procedure does not lead to a
unique set of material values.

In determining the material constants, the values of n in Eq. (33) were taken to be the same as those
determined by Rubin et al. (1998), with the lower value of n (for facial skin) causing more dissipation (i.e.
SMAS responds more elastically than skin). The initial slope of the loading curve in cycle 1 is mainly
controlled by the constants {l0, C2}, and the nonlinearity of the unloading curves is mainly controlled by
the constant q. The value of C1 influences both the dissipation in cycle 3 and the rate of stress relaxation in
Figs. 1(b) and 2(b). The constant r1 controls the rate of hardening and the elastic range exhibited in the
cycles 2 and 3, and the constant r2 controls the shape of the relaxation curves.

The preceding procedure is based on the identification of the material constants with particular response
characteristics under a specific set of loading conditions. However, the resulting equations with the de-
termined material constants should be applicable for all loading histories consistent with the limitations of
the general theory.

Table 1

Material constants for SMAS and facial skin

SMAS Facial skin

Material constants determined by available experimental data

l0 (MPa) 2.0 0.9

q 25.0 36.0

C1 (s�1) 0.01 0.009

C2 20.0 10.0

n 1.0 0.5

r1 5.0Eþ 3 30.0Eþ 3

r2 6.0 15.0

Material constants set to exhibit specific physical features of the model

k1 (GPa) 2.2 2.2

m2 0.01 0.01

m3 0.1 0.1

m4 1.0 1.0

r3 (s�1) 1.0E� 10 1.0E� 10

r4 (s�1) 1.0E� 4 1.0E� 4

r5 1.0 1.0
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Figs. 1 and 2 show that the theoretical predictions of these constitutive equations are in good agreement
with the experimental data for SMAS and facial skin for both loading and relaxation cycles. The remaining
Figs. 3–7 examine additional features of the response predicted by these equations. Figs. 3 and 4 show
aspects of the response of SMAS during the loading cycle 1 shown in Fig. 1. Specifically, Fig. 3 exhibits two
aspects of the exact nonlinear geometry used in the equations. Fig. 3(a) shows that the Cauchy stress T11
(stress per unit present area) is larger than the engineering stress P11. The response predicted by these
constitutive equations is nearly isochoric with the volumetric strain ev remaining about 10�4. Within the
context of linearized geometry, isochoric deformation would cause the lateral strain to be equal to (�e11=2)
instead of the actual value e22 predicted by the theory. Therefore, Fig. 3(b) shows the effect of nonlinear
geometry on the lateral strain.

Fig. 4 shows the relative magnitudes of the four axial stress contributions. In particular, notice that for
the specified constants, the value of the stress T ð2Þ

11 , associated with purely elastic distortion, is nearly two
orders of magnitude smaller than the total axial stress T11; and the value of T ð3Þ

11 , associated with the fiber

Fig. 3. Nonlinear geometrical effects exhibited in the response predicted during the loading cycle 1 for SMAS: (a) comparison of the

Cauchy stress T11 with the engineering stress P11; (b) comparison of the lateral strain e22 with that predicted by isochoric linear de-

formation (�e11/2).

Fig. 4. Relative magnitudes of the various components of stress during the loading cycle 1 for SMAS. Comparison of: (a) the total axial

stress T11 with the stress T ð1Þ
11 associated with volumetric deformation and the stress T ð4Þ

11 associated with dissipation; (b) the stress T ð2Þ
11

associated with purely elastic distortional deformation, and the stress T ð3Þ
11 associated with the fiber component.
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component, is about an order of magnitude smaller than T11. The main contributions to the axial stress are
the stress T ð1Þ

11 , associated with volumetric deformation, and the stress T ð4Þ
11 , associated with the dissipation

component.
These figures demonstrate that the proposed model includes the physical features (P1)–(P3) of soft tissue

which were described in Section 1. The additional physical features (P4) and (P5) can be observed in
the simulations of Fig. 5. Specifically, in Fig. 5, the model for SMAS is loaded to e11 ¼ 0:10, unloaded to
e11 ¼ 0:05 and then is subjected to six cycles of loading and unloading, all at the constant
rate _ee11 ¼ �2:0� 10�2 s�1. In Fig. 5(a), the strain range of the additional cycles is between e11 ¼ 0:05 and
0.10, and dissipation occurs at a diminishing rate as the material continues to harden. In contrast, in Fig.
5(b), the strain range of the additional cycles is between e11 ¼ 0:05 and 0.075, and the response is nearly
elastic.

Fig. 6 examines the effect of strain rate on SMAS. Specifically, it is recalled that the cycles 1, 2 and 3 in
the experiments and in the simulations shown in Fig. 1(a) were conducted at different loading rates. The
cycles shown in Fig. 6(a) and (b) are strain controlled and they use the same strain ranges as those in Fig. 1.
However, all of the cycles shown in Fig. 6(a) are loaded at the constant rate _ee11 ¼ �2:0� 10�2 s�1, which is
associated with cycle 1 in Fig. 1(a). Thus, the theoretical curve for cycle 1 in Fig. 6(a) is the same as that
shown in Fig. 1(a). It can be observed that the response to cycle 2 in Fig. 6(a) is almost unaffected by the
increase in strain rate by a factor of 4 compared with cycle 2 in Fig. 1(a), whereas the response to cycle 3 in
Fig. 6(a) is slightly affected by the increase in strain rate by a factor of 20 compared with cycle 3 in Fig. 1(a).
All of the cycles shown in Fig. 6(b) are loaded at the constant rate _ee11 ¼ �2:0� 10�1 s�1, which is 10 times
higher than that used in Fig. 6(a). Comparison of the results in Fig. 6(b) with those in Fig. 6(a) demon-
strates that when the strain rate is high enough, the material response is nearly rate insensitive, which is
consistent with the physical feature (P6).

Fig. 7 shows the effect of recovery of hardening, which is associated with inward flow of fluid to the
tissue. Specifically, in Fig. 7, SMAS is loaded to e11 ¼ 0:1 at a constant strain rate _ee11 ¼ 2:0� 10�2 s�1, and
then the strain is held constant and the material is allowed to relax. Fig. 7(a) shows the short-time response
in which the stress relaxes and the hardening variable b continues to increase due to dissipation. Fig. 7(b)
shows the long-time response in which the stress continues to relax as the hardening variable decreases due
to recovery. In particular, it can be seen that the stress T ð4Þ

11 associated with the dissipative component
decreases towards zero, whereas the stress T ð3Þ

11 , associated with the fiber component, remains relatively
constant.

Fig. 5. Simulated conditioning of SMAS. Loading to e11 ¼ 0:10, unloading to e11 ¼ 0:05, followed by six cycles: (a) between e11 ¼ 0:05
and 0.10; and (b) between e11 ¼ 0:05 and 0.075. All loading and unloading occurs at the rate _ee11 ¼ �2:0� 10�2 s�1.
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6. Conclusions

In the previous sections, a set of three-dimensional constitutive equations has been proposed for
modeling the nonlinear dissipative response of soft tissue. These equations model the tissue as a composite
of elastic and dissipative components. The elastic component includes purely elastic response to dilatation,
distortion and the stretch of material fiber components, and the dissipative component responds to dis-
tortional deformations. Specific functional forms have been proposed in Section 4, and material constants
have been determined which yield good agreement with uniaxial stress experiments on SMAS and facial
skin. The equations have been shown to exhibit the physical features (P1)–(P6) of soft tissue that have been
described in Section 1. In particular, it is noted that, in contrast with standard viscoelastic models of tissues,
the proposed constitutive equations include the total deformation rate in evolution equations in order to
reproduce the observed physical feature (P6) that the hysteresis loops of most biological soft tissues are
nearly independent of the strain rate (Fung, 1993).

As previously mentioned, the experiments of Har-Shai et al. (1996) are not sufficient to determine all of
the material constants in the specific model of Section 4. However, an experimental procedure for deter-
mining the responses Tð1Þ, Tð2Þ, Tð3Þ of the elastic components and the response Tð4Þ of the dissipative
component could be devised as follows:

Fig. 6. Cyclic loading of SMAS showing near rate-insensitive response. All cycles are loaded at the same rate: (a) _ee11 ¼ �2:0� 10�2 s�1;

(b) _ee11 ¼ �2:0� 10�1 s�1.

Fig. 7. Relaxation of SMAS. Loading to e11 ¼ 0:1 at a rate of _ee11 ¼ 2:0� 10�2 s�1 followed by stress relaxation: (a) over a short period,

and (b) over a long period, with recovery of hardening.

5096 M.B. Rubin, S.R. Bodner / International Journal of Solids and Structures 39 (2002) 5081–5099



The evolution Eq. (35) for the hardening variable b is phenomenological in nature and attempts to model
the observed hardening due to loss of fluid during loading and dissipation, as well as recovery of hardening
due to re-absorption of fluid. In particular, it follows from (15a)–(15d), (29), (33), and (35) that if the
material is held at constant strain over a long time period, then both b and the stress Tð4Þ, due to the
dissipative component, approach zero. Consequently, the only remaining stresses are Tð1Þ, Tð2Þ and Tð3Þ

associated with the elastic components. This means that by performing experiments with different homo-
geneous total deformations, followed by long-time relaxation periods, it is possible to determine the con-
stitutive equations for Tð1Þ, Tð2Þ and Tð3Þ. Specifically, since the fiber component (29) cannot support
compression, the constants {m1l0, m2l0, q} can be determined by matching uniaxial stress tests in directions
perpendicular to the fiber component. Then, the constants {m3l0, m4} can be determined by matching
uniaxial stress tests in the direction of the fiber component.

Once the material constants for purely elastic response have been determined, short-time loading and
stress relaxation tests can be used to determine the dissipative material constants. Specifically, it is expected
that {l0} can be determined by considering the Poisson effect in rapid uniaxial stress loading. Then, {C2, n,
r2} can be determined by matching the response to rapid loading–unloading–reloading cycles. Next, it is
assumed that the recovery of hardening in (35) occurs over relatively long time periods, so that the short-
time response in relaxation tests ( _ee ¼ 0) can be used to determine the constants {C1} in (33), and {r1, r3} in
(35). Then, long-time relaxation tests can be used to determine the constants {r4, r5} in (35). In this regard,
it should be noted that since comparison with a limited set of experiments is necessarily somewhat sub-
jective, this general procedure may not lead to a unique set of material constants, which is typical when
considering nonlinear time-dependent constitutive equations.

The equations proposed in this paper provide an alternative theoretical structure to the standard vi-
scoelastic formulations that have been used to model soft tissue. The specific functional forms for the
constitutive equations are rather simple and they model the main physical features of biological tissue.
However, the functional forms for the evolutions equations can be modified to include more complicated
physical features as additional experimental data becomes available.
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Appendix A. Numerical integration of the evolution equations

Following the numerical procedures developed in Rubin (1989), Rubin and Attia (1996), the evolution
equation (15a) is integrated by assuming that L is constant over the time interval Dt ¼ t2 � t1, and by
considering an elastic trial solution B0�

de which is approximated by

B0�
de ¼ B0

de1 þ Dt½LB0
de1 þ B0

de1L
T � 2

3
ðD � IÞB0

de1
; ðA:1Þ

where for convenience, B0
de1 and B

0
de2 denote the values of B

0
de at times t1 and t2, respectively. Also, the elastic

trial values B00�
de and b�

de are defined by

B00�
de ¼ B0�

de �
1

3
ðB0�

de � IÞI; b�
de ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
B00�

de � B00�
de

r
: ðA:2Þ

Then, the evolution Eq. (15a) can be integrated implicitly by taking

B0
de2 ¼ B0�

de � DtCðt2ÞAdðt2Þ: ðA:3Þ

Consequently, with the help of (15c), the deviatoric part of (A.3) yields
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½1þ DtCðt2Þ
B00
de2 ¼ B00�

de : ðA:4Þ

Now, the notion of radial return suggests that

B00
de2 ¼ kB00�

de ; be2 ¼ bdeðt2Þ ¼ kb�
de; 06 k6 1; ðA:5Þ

where k is a scalar (not to be confused with the stretch of a material fiber component) that is determined by
the equation

1 ¼ ½1þ DtCðt2Þ
k: ðA:6Þ

Thus, it follows that k equals unity for elastic response (C ¼ 0) and is less than unity for dissipative re-
sponse. Moreover, assuming that the hardening variable b does not change too rapidly during a single time
step, the value of k can be determined by iteration until (A.6) is satisfied with Cðt2Þ given by

Cðt2Þ ¼ ½C1 þ C2 _ee
 exp
"
� 1

2

bðt1Þ
kb�

de

� �2n
#
; ðA:7Þ

where bðt1Þ is the value of b associated with the beginning of the time step. Once k has been determined, B00
de2

and be2 are given by (A.5). Also, the value of distortional deformation B0
eðt2Þ at the end of the time step can

be written in the form

B0
deðt2Þ ¼ B00

de2 þ 1
3
b1ðt2ÞI; ðA:8Þ

where the value of the invariant b1ðt2Þ is determined by a cubic equation which requires B0
de to be a uni-

modular tensor (Rubin and Attia, 1996).
For the specific deformation considered in the examples in Section 4, the elastic trial value a�d associated

with integrating (43), with C vanishing, can be expressed in the form

a�d ¼ adðt1Þ exp 2
3
DtðD11

�
� D22Þ



: ðA:9Þ

Then, the elastic trial value B0�
de becomes

B0�
de ¼ a�2d ðe1 � e1Þ þ

1

a�d
ðe2 � e2 þ e3 � e3Þ: ðA:10Þ

Also, the values of D11 and D22 are approximated by

D11 ¼
_ee11

aðt1Þ þ Dt _ee11
2

; D22 ¼
_ee22

bðt1Þ þ Dt e22
2

: ðA:11Þ

Finally, simple Euler integration is used to determine the value of hardening associated with the evolution
equation (35)

bðt2Þ ¼ bðt1Þ þ Dt
r1r3 þ r2 _ee
r3 þ _ee

( )
Cðt2Þbdeðt1Þ

"
� r4fbðt1Þgr5

#
: ðA:12Þ
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